Roboflow Docs
DashboardResourcesProducts
  • Documentation
  • Developer Reference
  • Changelog
  • Roboflow Documentation
  • Quickstart
  • Workspaces
    • Workspaces, Projects, and Models
    • Create a Workspace
    • Manage Team Members
    • Role-Based Access Control
    • Usage Based Pricing
    • Delete a Workspace
  • Workflows
    • Create a Workflow
    • Build a Workflow
    • Test a Workflow
    • Deploy a Workflow
    • Workflow Examples
      • Multimodal Model Workflow
    • Share a Workflow
  • Datasets and Labeling
    • Create a Project
    • Upload Data
      • Import Data from Cloud Providers
        • AWS S3 Bucket
        • Azure Blob Storage
        • Google Cloud Storage
      • Upload Video
      • Import from Roboflow Universe
    • Manage Datasets
      • Dataset Batches
      • Search a Dataset
      • Set Dataset Classes
      • Add Tags to Images
      • Create an Annotation Attribute
      • Delete an Image
    • Dataset Versions
      • Create a Dataset Version
      • Preprocess Images
      • Augment Images
      • Delete a Version
      • Export a Dataset Version
    • Dataset Analytics
    • Merge Projects
    • Delete a Project
    • Project Folders
    • Make a Project Public
  • Annotate
    • Annotation Tools
    • Use Roboflow Annotate
      • Annotate Keypoints
      • Label Assist (AI Labeling)
      • Enhanced Smart Polygon with SAM (AI Labeling)
      • Smart Polygon (AI Labeling)
      • Keyboard Shortcuts
      • Comment on an Image
      • Annotation History
      • Similarity Search
      • Box Prompting (AI Labeling)
    • Auto Label
    • Collaborate on Annotations
    • Edit Keypoint Skeletons
    • Annotation Insights
  • Train
    • Train a Model
      • Train from a Universe Checkpoint
      • Train from Azure Vision
      • Train from Google Cloud
    • View Training Results
    • View Trained Models
    • Evaluate Trained Models
  • Deploy
    • Deploy a Model or Workflow
      • Roboflow Managed Deployments Overview
    • Serverless Hosted API
      • Object Detection
      • Classification
      • Instance Segmentation
        • Semantic Segmentation
      • Keypoint Detection
      • Foundation Models
        • CLIP
        • OCR
        • YOLO-World
      • Video Inference
        • Use a Fine-Tuned Model
        • Use CLIP
        • Use Gaze Detection
        • API Reference
        • Video Inference JSON Output Format
      • Pre-Trained Model APIs
        • Blur People API
        • OCR API
        • Logistics API
        • Image Tagging API
        • People Detection API
        • Fish Detection API
        • Bird Detection API
        • PPE Detection API
        • Barcode Detection API
        • License Plate Detection API
        • Ceramic Defect Detection API
        • Metal Defect Detection API
    • Serverless Hosted API V2
    • Dedicated Deployments
      • Create a Dedicated Deployment
      • Make Requests to a Dedicated Deployment
      • Manage Dedicated Deployments with an API
    • SDKs
      • Python inference-sdk
      • Web Browser
        • inferencejs Reference
        • inferencejs Requirements
      • Lens Studio
        • Changelog - Lens Studio
      • Luxonis OAK
    • Upload Custom Model Weights
    • Download Model Weights
    • Enterprise Deployment
      • License Server
      • Offline Mode
      • Kubernetes
      • Docker Compose
    • Monitor Deployed Models
      • Alerting
  • Support
    • Share a Workspace with Support
    • Account Deletion
Powered by GitBook
On this page
  • Use Python SDK
  • Use HTTP API
  • Use Workflow UI

Was this helpful?

  1. Deploy
  2. Dedicated Deployments

Make Requests to a Dedicated Deployment

You can make requests to a Dedicated Deployment directly with the Python SDK, using a HTTP API, or using the Workflows web interface.

PreviousCreate a Dedicated DeploymentNextManage Dedicated Deployments with an API

Last updated 1 month ago

Was this helpful?

Use Python SDK

Please install the latest version of our Python SDK with pip install --upgrade inference-sdk.

When your dedicated deployment is ready, copy its URL:

and paste it to the parameter api_url when initialise InferenceHTTPClient , and that's it!

from inference_sdk import InferenceHTTPClient

CLIENT = InferenceHTTPClient(
    api_url="https://dev-testing.roboflow.cloud",
    api_key="ROBOFLOW_API_KEY"
)

image_url = "https://source.roboflow.com/pwYAXv9BTpqLyFfgQoPZ/u48G0UpWfk8giSw7wrU8/original.jpg"
result = CLIENT.infer(image_url, model_id="soccer-players-5fuqs/1")

Use HTTP API

Please attach your workspace api_key as a query parameter when access these endpoints.

Here is an example for making the same request as above using HTTP API:

import requests
import json

api_url = "https://dev-testing.roboflow.cloud"
model_id = "soccer-players-5fuqs/1"
image_url = "https://source.roboflow.com/pwYAXv9BTpqLyFfgQoPZ/u48G0UpWfk8giSw7wrU8/original.jpg"

resp = requests.get(f"{api_url}/{model_id}", params = {"api_key": "ROBOFLOW_API_KEY", "image": image_url})
result = json.loads(resp.content)

Use Workflow UI

After creating your workflow, click on the Running on Hosted API link in the top left corner:

Click Dedicated Deployments to see the list of your dedicated deployments, select the target deployment, then click Connect:

Now you are ready to use your dedicated deployment in the workflow editor.

Here is an example for running model inference, you can find more details in .

You can also access which are listed under /docs, e.g,, https://dev-testing.roboflow.cloud/docs .

A dedicated deployment can also be used as the backend server for running . Roboflow Workflows is a low-code, web-based application builder for creating computer vision applications.

Changing the backend where the workflow will execute.
the documentation of inference_sdk
the HTTP APIs
Roboflow Workflows
inference_sdk
Copy URL of your dedicated deployment when it's ready
Select a target dedicated deployment as the backend server for workflow execution.