Upload Custom Weights
Roboflow offers the ability to upload model weights for your custom-trained models to your Roboflow projects for model deployment.
Once you've completed training your custom model, upload your model weights back to your Roboflow project to take advantage of Roboflow Inference.
Model weights uploads are currently available for:
YOLOv5 (n, s, m, l, x) Object Detection and Instance Segmentation
YOLOv7 Instance Segmentation (yolov7-seg)
YOLOv8 (n, s, m, l, x) Object Detection, Instance Segmentation, Classification, and Keypoint Detection
YOLOv9 (n, s, m, l, x) Object Detection
YOLOv10 (n, s, m, l, x) Object Detection
YOLO-NAS (s, m, l) Object Detection
After successfully training your model, use the .deploy()
function to upload your model weights back to your Roboflow Object Detection project.
Model weights uploads are only available for dataset versions without a trained model (i.e not yet trained with Roboflow Train, and no model weights uploaded).
NOTE: Larger model sizes provide better training results. However, the larger the model size, the slower the training time, and inference (model prediction) speed. Consider whether you're looking for real-time inference on fast-moving objects or video feeds (better to use a smaller model), or you are processing data after it is collected, and more concerned with higher prediction accuracy (choose a larger model).
Upload Custom Weights
You need roboflow>=1.0.1
and ultralytics==8.0.196 to use the.deploy()
command.
To upload custom weights, use the model.deploy()
method in the Python SDK. Fi
The following model types are supported:
yolov5, yolov5-seg
yolov7, yolov7-seg
yolov8, yolov8-seg, yolov8-cls, yolov8-pose
yolov9
yolov10
yolonas
If weights upload is attempted for dataset versions that already have a trained model (a Roboflow Train model or uploaded custom model) then you will receive a RuntimeError
- "This version already has a trained model. Please generate and train a new version in order to upload model to Roboflow."
If upload is attempted for a model architecture that is not yet supported for weights upload, then you will receive a ValueError
.
Next Steps
Test your model in the Deploy Tab.
Run your model locally with Roboflow Inference Server.
Deploy your Model with Roboflow Deploy.
Improve your Model with Active Learning.
Last updated