Roboflow Docs
DashboardResourcesProducts
  • Product Documentation
  • Developer Reference
  • Changelog
  • Roboflow Documentation
  • Quickstart
  • Workspaces
    • Workspaces, Projects, and Models
    • Create a Workspace
    • Rename a Workspace
    • Delete a Workspace
  • Team Members
    • Invite a Team Member
    • Role-Based Access Control (RBAC)
    • Change a Team Member Role
    • Remove a Team Member
  • Single Sign On (SSO)
  • Workflows
    • What is Workflows?
    • Create a Workflow
    • Build a Workflow
    • Test a Workflow
    • Deploy a Workflow
    • Workflow Examples
      • Multimodal Model Workflow
    • Share a Workflow
    • Workflows AI Assistant
  • Enterprise Integrations
  • Workflow Blocks
    • Run a Model
      • Object Detection Model
      • Single-Label Classification Model
    • Visualize Predictions
      • Bounding Box Visualization
      • Label Visualization
      • Circle Visualization
      • Background Color Visualization
      • Classification Label Visualization
      • Crop Visualization
  • Dataset Management
    • Create a Project
    • Upload Images, Videos, and Annotations
      • Import Data from Cloud Providers
        • AWS S3 Bucket
        • Azure Blob Storage
        • Google Cloud Storage
      • Import from Roboflow Universe
    • Manage Datasets
      • Dataset Batches
      • Search a Dataset
      • Set Dataset Classes
      • Add Tags to Images
      • Create an Annotation Attribute
      • Download an Image
      • Delete an Image
    • Dataset Versions
      • Create a Dataset Version
      • Preprocess Images
      • Augment Images
      • Delete a Version
      • Export a Dataset Version
    • Dataset Analytics
    • Merge Projects
    • Rename a Project
    • Delete a Project
    • Project Folders
    • Make a Project Public
  • Annotate
    • Introduction to Roboflow Annotate
    • Annotate an Image
      • Keyboard Shortcuts
      • Comment on an Image
      • Annotation History
      • Similarity Search
    • AI Labeling
      • Label Assist
      • Enhanced Smart Polygon with SAM
        • Smart Polygon (Legacy)
      • Box Prompting
      • Auto Label
    • Set Keypoint Skeletons
    • Annotate Keypoints
    • Annotate Multimodal Data
    • Collaborate on Labeling
    • Annotation Insights
  • Managed Labeling
  • Train
    • Train a Model
      • Train from a Universe Checkpoint
      • Train from Azure Vision
      • Train from Google Cloud
    • Roboflow Instant
    • Cancel a Training Job
    • Stop Training Early
    • View Training Results
    • View Trained Models
    • Evaluate Trained Models
  • Download a Dataset Version
  • Deploy
    • Deploy a Model or Workflow
    • Managed Deployments
    • Serverless Hosted API V2
      • Use in a Workflow
      • Use with the REST API
      • Run an Instant Model
    • Serverless Hosted API
      • Object Detection
      • Classification
      • Instance Segmentation
        • Semantic Segmentation
      • Keypoint Detection
      • Foundation Models
        • CLIP
        • OCR
        • YOLO-World
      • Video Inference
        • Use a Fine-Tuned Model
        • Use CLIP
        • Use Gaze Detection
        • API Reference
        • Video Inference JSON Output Format
      • Pre-Trained Model APIs
        • Blur People API
        • OCR API
        • Logistics API
        • Image Tagging API
        • People Detection API
        • Fish Detection API
        • Bird Detection API
        • PPE Detection API
        • Barcode Detection API
        • License Plate Detection API
        • Ceramic Defect Detection API
        • Metal Defect Detection API
    • Dedicated Deployments
      • Create a Dedicated Deployment
      • Make Requests to a Dedicated Deployment
      • Manage Dedicated Deployments with an API
    • Batch Processing
    • SDKs
      • Python inference-sdk
      • Web Browser
        • inferencejs Reference
        • inferencejs Requirements
      • Lens Studio
        • Changelog - Lens Studio
      • Luxonis OAK
    • Upload Custom Model Weights
    • Download Model Weights
    • Enterprise Deployment
      • License Server
      • Offline Mode
      • Kubernetes
      • Docker Compose
    • Monitor Deployed Models
      • Alerting
  • Universe
    • What is Roboflow Universe?
    • Find a Dataset on Universe
    • Explore Images in a Universe Dataset
    • Fork a Universe Dataset
    • Find a Model on Universe
    • Download a Universe Dataset
  • Set a Project Description
  • View Project Analytics
  • Support
    • Share a Workspace with Support
    • Delete Your Roboflow Account
    • Apply for Academic Credits
  • Billing
    • Premium Trial
    • Credits
      • View Credit Usage
      • Enable or Disable Flex Billing
      • Purchase Prepaid Credits
    • Plans
      • Purchase a Plan
      • Cancel a Plan
      • Update Billing Details
      • Update Payment Method
      • View Invoices
Powered by GitBook
On this page

Was this helpful?

  1. Deploy
  2. Serverless Hosted API
  3. Foundation Models

YOLO-World

PreviousOCRNextVideo Inference

Last updated 1 year ago

Was this helpful?

YOLO-World is a zero-shot object detection model that allows you to perform object detection without any training, just by describing the items you want to detect.

You can also run YOLO-World locally using , our open-source inference server.

API Reference

The base URL for our hosted API is at https://infer.roboflow.com.

More information on using YOLO-World with Inference, through the Python SDK or the self-hosted API, see the .

  • API Reference
  • POSTYOLO-World inference.
Inference
YOLO-World Inference docs page

YOLO-World inference.

post

Run the YOLO-World zero-shot object detection model.

Query parameters
api_keyany ofOptional

Roboflow API Key that will be passed to the model during initialization for artifact retrieval

stringOptional
or
nullOptional
Body

Request for Grounding DINO zero-shot predictions.

Attributes: text (List[str]): A list of strings.

idstringRequired
api_keyany ofOptional

Roboflow API Key that will be passed to the model during initialization for artifact retrieval

stringOptional
or
nullOptional
usage_billablebooleanOptionalDefault: true
startany ofOptional
numberOptional
or
nullOptional
sourceany ofOptional
stringOptional
or
nullOptional
source_infoany ofOptional
stringOptional
or
nullOptional
model_idany ofOptional
stringOptional
or
nullOptional
model_typeany ofOptional

The type of the model, usually referring to what task the model performs

Example: object-detection
stringOptional
or
nullOptional
imageany ofRequired
or
disable_preproc_auto_orientany ofOptional

If true, the auto orient preprocessing step is disabled for this call.

Default: false
booleanOptional
or
nullOptional
disable_preproc_contrastany ofOptional

If true, the auto contrast preprocessing step is disabled for this call.

Default: false
booleanOptional
or
nullOptional
disable_preproc_grayscaleany ofOptional

If true, the grayscale preprocessing step is disabled for this call.

Default: false
booleanOptional
or
nullOptional
disable_preproc_static_cropany ofOptional

If true, the static crop preprocessing step is disabled for this call.

Default: false
booleanOptional
or
nullOptional
textstring[]Required

A list of strings

Example: ["person","dog","cat"]
yolo_world_version_idany ofOptionalDefault: l
stringOptional
or
nullOptional
confidenceany ofOptionalDefault: 0.4
numberOptional
or
nullOptional
Responses
200
Successful Response
application/json
422
Validation Error
application/json
post
POST /yolo_world/infer HTTP/1.1
Host: 
Content-Type: application/json
Accept: */*
Content-Length: 431

{
  "id": "text",
  "api_key": "text",
  "usage_billable": true,
  "start": 1,
  "source": "text",
  "source_info": "text",
  "model_id": "text",
  "model_type": "object-detection",
  "image": [
    {
      "type": "url",
      "value": "http://www.example-image-url.com"
    }
  ],
  "disable_preproc_auto_orient": false,
  "disable_preproc_contrast": false,
  "disable_preproc_grayscale": false,
  "disable_preproc_static_crop": false,
  "text": [
    "person",
    "dog",
    "cat"
  ],
  "yolo_world_version_id": "l",
  "confidence": 0.4
}
{
  "visualization": "text",
  "inference_id": "text",
  "frame_id": 1,
  "time": 1,
  "image": [
    {
      "width": 1,
      "height": 1
    }
  ],
  "predictions": [
    {
      "x": 1,
      "y": 1,
      "width": 1,
      "height": 1,
      "confidence": 1,
      "class": "text",
      "class_confidence": 1,
      "class_id": 1,
      "tracker_id": 1,
      "detection_id": "text",
      "parent_id": "text"
    }
  ]
}