Roboflow Docs
DashboardResourcesProducts
  • Product Documentation
  • Developer Reference
  • Changelog
  • Roboflow Documentation
  • Quickstart
  • Workspaces
    • Workspaces, Projects, and Models
    • Create a Workspace
    • Rename a Workspace
    • Delete a Workspace
  • Team Members
    • Invite a Team Member
    • Role-Based Access Control (RBAC)
    • Change a Team Member Role
    • Remove a Team Member
  • Single Sign On (SSO)
  • Workflows
    • What is Workflows?
    • Create a Workflow
    • Build a Workflow
    • Test a Workflow
    • Deploy a Workflow
    • Workflow Examples
      • Multimodal Model Workflow
    • Share a Workflow
    • Workflows AI Assistant
  • Enterprise Integrations
  • Workflow Blocks
    • Run a Model
      • Object Detection Model
      • Single-Label Classification Model
    • Visualize Predictions
      • Bounding Box Visualization
      • Label Visualization
      • Circle Visualization
      • Background Color Visualization
      • Classification Label Visualization
      • Crop Visualization
  • Dataset Management
    • Create a Project
    • Upload Images, Videos, and Annotations
      • Import Data from Cloud Providers
        • AWS S3 Bucket
        • Azure Blob Storage
        • Google Cloud Storage
      • Import from Roboflow Universe
    • Manage Datasets
      • Dataset Batches
      • Search a Dataset
      • Set Dataset Classes
      • Add Tags to Images
      • Create an Annotation Attribute
      • Download an Image
      • Delete an Image
    • Dataset Versions
      • Create a Dataset Version
      • Preprocess Images
      • Augment Images
      • Delete a Version
      • Export a Dataset Version
    • Dataset Analytics
    • Merge Projects
    • Rename a Project
    • Delete a Project
    • Project Folders
    • Make a Project Public
  • Annotate
    • Introduction to Roboflow Annotate
    • Annotate an Image
      • Keyboard Shortcuts
      • Comment on an Image
      • Annotation History
      • Similarity Search
    • AI Labeling
      • Label Assist
      • Enhanced Smart Polygon with SAM
        • Smart Polygon (Legacy)
      • Box Prompting
      • Auto Label
    • Set Keypoint Skeletons
    • Annotate Keypoints
    • Annotate Multimodal Data
    • Collaborate on Labeling
    • Annotation Insights
  • Managed Labeling
  • Train
    • Train a Model
      • Train from a Universe Checkpoint
      • Train from Azure Vision
      • Train from Google Cloud
    • Roboflow Instant
    • Cancel a Training Job
    • Stop Training Early
    • View Training Results
    • View Trained Models
    • Evaluate Trained Models
  • Download a Dataset Version
  • Deploy
    • Deploy a Model or Workflow
    • Managed Deployments
    • Serverless Hosted API V2
      • Use in a Workflow
      • Use with the REST API
      • Run an Instant Model
    • Serverless Hosted API
      • Object Detection
      • Classification
      • Instance Segmentation
        • Semantic Segmentation
      • Keypoint Detection
      • Foundation Models
        • CLIP
        • OCR
        • YOLO-World
      • Video Inference
        • Use a Fine-Tuned Model
        • Use CLIP
        • Use Gaze Detection
        • API Reference
        • Video Inference JSON Output Format
      • Pre-Trained Model APIs
        • Blur People API
        • OCR API
        • Logistics API
        • Image Tagging API
        • People Detection API
        • Fish Detection API
        • Bird Detection API
        • PPE Detection API
        • Barcode Detection API
        • License Plate Detection API
        • Ceramic Defect Detection API
        • Metal Defect Detection API
    • Dedicated Deployments
      • Create a Dedicated Deployment
      • Make Requests to a Dedicated Deployment
      • Manage Dedicated Deployments with an API
    • Batch Processing
    • SDKs
      • Python inference-sdk
      • Web Browser
        • inferencejs Reference
        • inferencejs Requirements
      • Lens Studio
        • Changelog - Lens Studio
      • Luxonis OAK
    • Upload Custom Model Weights
    • Download Model Weights
    • Enterprise Deployment
      • License Server
      • Offline Mode
      • Kubernetes
      • Docker Compose
    • Monitor Deployed Models
      • Alerting
  • Universe
    • What is Roboflow Universe?
    • Find a Dataset on Universe
    • Explore Images in a Universe Dataset
    • Fork a Universe Dataset
    • Find a Model on Universe
    • Download a Universe Dataset
  • Set a Project Description
  • View Project Analytics
  • Support
    • Share a Workspace with Support
    • Delete Your Roboflow Account
    • Apply for Academic Credits
  • Billing
    • Premium Trial
    • Credits
      • View Credit Usage
      • Enable or Disable Flex Billing
      • Purchase Prepaid Credits
    • Plans
      • Purchase a Plan
      • Cancel a Plan
      • Update Billing Details
      • Update Payment Method
      • View Invoices
Powered by GitBook
On this page
  • About this block
  • What you can send into this block
  • What this block returns
  • Use cases

Was this helpful?

  1. Workflow Blocks
  2. Visualize Predictions

Background Color Visualization

Draw a colour in regions not detected by a model.

PreviousCircle VisualizationNextClassification Label Visualization

Last updated 6 hours ago

Was this helpful?

About this block

The Background Color Visualization block lets you change the color of regions not detected by a detection model.

This is useful for if you want to highlight detected regions so they are easier to see in an image, or if you want to remove backgrounds from an image.

By default, this block makes regions not detected by a detection model opaque. You can also configure the block to change the colour of undetected regions.

This block works with:

  • Object detection models

  • Segmentation models

What you can send into this block

To use this block, you need:

  1. An input image or video frame, and;

  2. Predictions from an Object Detection or Segmentation model.

What this block returns

This block makes regions not detected by a model more opaque.

Here is an example output from this block:

You can change the colour and opacity of the background from the block configuration options:

The colour can be any hex value or a common color like BLACK, WHITE, BLUE, or RED.

Here is an example where the background is set to BLACK and the opacity is set to 1:

Use cases

This block is useful if you want to focus on regions in an image that have been detected, or if you want to remove undetected (background) regions from an image.

The Label Visualization block.
The background of the image is more opaque than the highlighted object
The background is now completely removed from the image.