인스턴스 분할(Instance Segmentation)

Roboflow에 호스팅된 인스턴스 분할 모델에서 추론을 실행하세요.

Linux 또는 MacOS

로컬 파일에서 JSON 예측을 가져오기 (파일 이름: YOUR_IMAGE.jpg:

base64 YOUR_IMAGE.jpg | curl -d @- \
"https://outline.roboflow.com/your-model/42?api_key=YOUR_KEY"

웹에 호스팅된 이미지의 URL로 추론하기 (URL을 URL 인코딩하세요):

curl -X POST "https://outline.roboflow.com/your-model/42?\
api_key=YOUR_KEY&\
image=https%3A%2F%2Fi.imgur.com%2FPEEvqPN.png"

Windows

다음 항목들을 설치해야 합니다 Windows용 curl 이제 GPU TRT 컨테이너가 Docker에서 실행 중입니다. 다른 Ubuntu 터미널을 열어 Docker 컨테이너로 추론 데이터를 보낼 준비를 합니다. 다음을 사용하세요: Windows용 GNU의 base64 도구. 이를 가장 쉽게 설치하는 방법은 git for Windows 설치 프로그램을 사용하는 것입니다 이 설치 프로그램은 또한 curl 이제 GPU TRT 컨테이너가 Docker에서 실행 중입니다. 다른 Ubuntu 터미널을 열어 Docker 컨테이너로 추론 데이터를 보낼 준비를 합니다. 다음을 사용하세요: base64 설치 중에 "Use Git and optional Unix tools from the Command Prompt"를 선택하면 명령줄 도구들이 포함됩니다.

그런 다음 위와 동일한 명령을 사용할 수 있습니다.

응답 객체 형식

호스팅된 API 추론 경로는 다음을 반환합니다 JSON 예측 배열을 포함하는 객체입니다. 각 예측은 다음 속성을 가집니다:

  • x = 감지된 객체의 수평 중심점

  • y = 감지된 객체의 수직 중심점

  • width = 바운딩 박스의 너비

  • height = 바운딩 박스의 높이

  • class = 감지된 객체의 클래스 레이블

  • confidence = 감지된 객체가 올바른 레이블과 위치 좌표를 가질 확률(모델의 신뢰도)

  • points =list of points that make of the polygon outline of the object - each item in the list is an object with keys x 이제 GPU TRT 컨테이너가 Docker에서 실행 중입니다. 다른 Ubuntu 터미널을 열어 Docker 컨테이너로 추론 데이터를 보낼 준비를 합니다. 다음을 사용하세요: y for the horizontal and vertical coordinate of the point respectively

// 예시 JSON 객체
{
  "predictions": [
    {
      "x": 179.2,
      "y": 247,
      "width": 231,
      "height": 147,
      "class": "A",
      "confidence": 0.98,
      "points": [
        {
          "x": 134,
          "y": 314
        },
        {
          "x": 116,
          "y": 313
        },
        {
          "x": 103,
          "y": 310.1
        },
        {
          "x": 72.7,
          "y": 282
        },
        {
          "x": 66.8,
          "y": 273
        },
      ]
    }
  ]
}

API 참조

Inference API 사용

POST https://outline.roboflow.com/:datasetSlug/:versionNumber

base64로 인코딩된 이미지를 모델 엔드포인트로 직접 POST할 수 있습니다. 또는 이미지가 이미 다른 곳에 호스팅되어 있다면 URL을 쿼리 문자열의 매개변수에 대해 입력 이미지를 선택하세요. 예측에는 모델 결과를 선택하세요. 선택적 구성 속성을 사용하여 경계 상자의 색상과 크기를 변경할 수 있습니다. 매개변수로 전달할 수 있습니다.

경로 매개변수

이름
유형
설명

datasetSlug

string

데이터셋 이름의 URL 안전 버전입니다. 웹 UI에서 메인 프로젝트 뷰의 URL을 보거나 모델을 학습한 후 데이터셋 버전의 학습 결과 섹션에서 "Get curl command" 버튼을 클릭하면 찾을 수 있습니다.

version

number

데이터셋 버전을 식별하는 버전 번호

쿼리 매개변수

이름
유형
설명

매개변수에 대해 입력 이미지를 선택하세요. 예측에는 모델 결과를 선택하세요. 선택적 구성 속성을 사용하여 경계 상자의 색상과 크기를 변경할 수 있습니다.

string

추가할 이미지의 URL. 이미지가 다른 곳에 호스팅된 경우 사용합니다. (요청 본문에 base64로 인코딩된 이미지를 POST하지 않을 때 필요합니다.) 참고: URL 인코딩하는 것을 잊지 마세요.

overlap

number

동일 클래스의 바운딩 박스 예측이 단일 박스로 결합되기 전에 허용되는 최대 중첩 비율(0-100 척도). 기본값: 30

confidence

number

0-100 척도의 반환된 예측에 대한 임계값입니다. 낮은 값은 더 많은 예측을 반환하고, 높은 값은 적은 수의 높은 확신 예측을 반환합니다. 기본값: 40

api_key

string

워크스페이스 API 설정 페이지에서 얻은 API 키

요청 본문

이름
유형
설명

string

base64로 인코딩된 이미지. (쿼리 매개변수로 이미지 URL을 전달하지 않을 때 필요합니다).

{
    "predictions": [{
        "x": 234.0,
        "y": 363.5,
        "width": 160,
        "height": 197,
        "class": "hand",
        "confidence": 0.943
    }, {
        "x": 504.5,
        "y": 363.0,
        "width": 215,
        "height": 172,
        "class": "hand",
        "confidence": 0.917
    }, {
        "x": 1112.5,
        "y": 691.0,
        "width": 139,
        "height": 52,
        "class": "hand",
        "confidence": 0.87
    }, {
        "x": 78.5,
        "y": 700.0,
        "width": 139,
        "height": 34,
        "class": "hand",
        "confidence": 0.404
    }]
}

Last updated

Was this helpful?