REST API와 함께 사용
Serverless Hosted API V2에는 모든 모델과 Workflows에 대한 단일 엔드포인트가 있습니다:
https://serverless.roboflow.comObject detection, Keypoint detection
https://serverless.roboflow.com
https://detect.roboflow.com
인스턴스 세분화
https://serverless.roboflow.com
https://outline.roboflow.com
분류
https://serverless.roboflow.com
https://classify.roboflow.com
시맨틱 세분화
현재 지원되지 않음
https://segment.roboflow.com
Foundation models (i.e. CLIP, OCR, YOLO-World)
https://serverless.roboflow.com
https://infer.roboflow.com
HTTP로 요청하기
Checks Roboflow API for workflow definition, once acquired - parses and executes injecting runtime parameters from request body
Roboflow API Key that will be passed to the model during initialization for artifact retrieval
List of field that shall be excluded from the response (among those defined in workflow specification)
Flag to request Workflow run profiling. Enables Workflow profiler only when server settings allow profiling traces to be exported to clients. Only applies for Workflows definitions saved on Roboflow platform.
falseOptional identifier of workflow
Controls usage of cache for workflow definitions. Set this to False when you frequently modify definition saved in Roboflow app and want to fetch the newest version for the request.
trueSuccessful Response
Validation Error
POST /{workspace_name}/workflows/{workflow_id} HTTP/1.1
Host:
Content-Type: application/json
Accept: */*
Content-Length: 156
{
"api_key": "text",
"inputs": {
"ANY_ADDITIONAL_PROPERTY": "anything"
},
"excluded_fields": [
"text"
],
"enable_profiling": false,
"workflow_id": "text",
"use_cache": true
}{
"outputs": [
{
"ANY_ADDITIONAL_PROPERTY": "anything"
}
],
"profiler_trace": [
{
"ANY_ADDITIONAL_PROPERTY": "anything"
}
]
}Python SDK로 요청하기
Python을 사용 중인 경우 Serverless API와 상호 작용하는 가장 편리한 방법은 Inference Python SDK를 사용하는 것입니다.
SDK를 사용하려면 먼저 설치하세요:
pip install inference-sdkServerless Hosted API V2에 요청하려면 다음 코드를 사용하세요:
from inference_sdk import InferenceHTTPClient
CLIENT = InferenceHTTPClient(
api_url="https://serverless.roboflow.com",
api_key="API_KEY"
)
result = CLIENT.infer(your_image.jpg, model_id="model-id/1")위에서, 다음을 지정하세요 model ID 이제 GPU TRT 컨테이너가 Docker에서 실행 중입니다. 다른 Ubuntu 터미널을 열어 Docker 컨테이너로 추론 데이터를 보낼 준비를 합니다. 다음을 사용하세요: API key.
Last updated
Was this helpful?