YOLO-World
YOLO-World는 감지하려는 항목을 설명하기만 하면 어떠한 학습 없이도 객체 감지를 수행할 수 있는 제로샷 객체 감지 모델입니다.
YOLO-World를 로컬에서 실행할 수도 있습니다 Inference, 저희의 오픈소스 inference 서버입니다.
API 참조
호스팅된 API의 기본 URL은 https://infer.roboflow.com.
Run the YOLO-World zero-shot object detection model.
Roboflow API Key that will be passed to the model during initialization for artifact retrieval
Request for Grounding DINO zero-shot predictions.
Attributes: text (List[str]): A list of strings.
Roboflow API Key that will be passed to the model during initialization for artifact retrieval
trueIf true, disables model monitoring for this request
falseThe type of the model, usually referring to what task the model performs
object-detectionIf true, the auto orient preprocessing step is disabled for this call.
falseIf true, the auto contrast preprocessing step is disabled for this call.
falseIf true, the grayscale preprocessing step is disabled for this call.
falseIf true, the static crop preprocessing step is disabled for this call.
falseA list of strings
["person","dog","cat"]l0.4Successful Response
Validation Error
POST /yolo_world/infer HTTP/1.1
Host:
Content-Type: application/json
Accept: */*
Content-Length: 464
{
"id": "text",
"api_key": "text",
"usage_billable": true,
"start": 1,
"source": "text",
"source_info": "text",
"disable_model_monitoring": false,
"model_id": "text",
"model_type": "object-detection",
"image": [
{
"type": "url",
"value": "http://www.example-image-url.com"
}
],
"disable_preproc_auto_orient": false,
"disable_preproc_contrast": false,
"disable_preproc_grayscale": false,
"disable_preproc_static_crop": false,
"text": [
"person",
"dog",
"cat"
],
"yolo_world_version_id": "l",
"confidence": 0.4
}{
"visualization": "text",
"inference_id": "text",
"frame_id": 1,
"time": 1,
"image": [
{
"width": 1,
"height": 1
}
],
"predictions": [
{
"x": 1,
"y": 1,
"width": 1,
"height": 1,
"confidence": 1,
"class": "text",
"class_confidence": 1,
"class_id": 1,
"tracker_id": 1,
"detection_id": "text",
"parent_id": "text"
}
]
}Last updated
Was this helpful?