Bounding Box Level Augmentation
Augment your images based on only what is in the bounding boxes.

Bounding Box Augmentation

Bounding box level augmentation generates new training data by only altering the content of a source image’s bounding boxes. In doing so, developers have greater control over creating training data that is more suitable to their problem’s conditions.
    A 2019 paper from Google researchers introduces the idea of using bounding box only augmentation to create optimal data for their models. In this paper, researchers showed bounding box only modifications generated systemic improvements, especially for models that were fit on small datasets.
Last modified 9mo ago
Copy link