Roboflow Docs
DashboardForum
  • Build Vision Models with Roboflow
  • Quickstart
  • Roboflow Enterprise
  • Workspaces
    • Create a Workspace
    • Delete a Workspace
    • Add Team Members
    • Role-Based Access Control
  • Usage Based Pricing
  • Workflows
    • Create a Workflow
    • Build a Workflow
    • Test a Workflow
    • Deploy a Workflow
    • Workflow Examples
      • Multimodal Model Workflow
    • Share a Workflow
      • Workflow Sharing Configuration
    • Advance Workflow Topics
      • JSON Editor
  • Datasets
    • Create a Project
    • Upload Data
      • Import Data from Cloud Providers
        • AWS S3 Bucket
        • Azure Blob Storage
        • Google Cloud Storage
      • Upload Video
      • Import from Roboflow Universe
    • Manage Batches
    • Search a Dataset
    • Create a Dataset Version
    • Preprocess Images
    • Create Augmented Images
    • Add Tags to Images
    • Manage Classes
    • Edit Keypoint Skeletons
    • Create an Annotation Attribute
    • Export Versions
    • Dataset Analytics
    • Merge Projects
    • Delete an Image
    • Delete a Version
    • Delete a Project
    • Project Folders
  • Annotate
    • Annotation Tools
    • Use Roboflow Annotate
      • Annotate Keypoints
      • Label Assist (AI Labeling)
      • Enhanced Smart Polygon with SAM (AI Labeling)
      • Smart Polygon (AI Labeling)
      • Keyboard Shortcuts
      • Comment on an Image
      • Annotation History
      • Similarity Search
      • Box Prompting (AI Labeling)
    • Automated Annotation with Auto Label
    • Collaborate on Annotations
    • Annotation Insights
    • Labeling Best Practices
  • Train
    • Train a Model in Roboflow
      • Train from Scratch
      • Train from a Universe Checkpoint
      • Python Package
      • Roboflow Notebooks (GitHub)
    • Train from Azure Vision
    • Train from Google Cloud
    • View Training Results
    • Evaluate Trained Models
    • Custom Training Notebooks
  • Deploy
    • Deployment Overview
      • Roboflow Managed Deployments Overview
    • Serverless Hosted API
      • Object Detection
      • Classification
      • Instance Segmentation
        • Semantic Segmentation
      • Keypoint Detection
      • Foundation Models
        • CLIP
        • OCR
        • YOLO-World
      • Video Inference
        • Use a Fine-Tuned Model
        • Use CLIP
        • Use Gaze Detection
        • API Reference
        • Video Inference JSON Output Format
      • Pre-Trained Model APIs
        • Blur People API
        • OCR API
        • Logistics API
        • Image Tagging API
        • People Detection API
        • Fish Detection API
        • Bird Detection API
        • PPE Detection API
        • Barcode Detection API
        • License Plate Detection API
        • Ceramic Defect Detection API
        • Metal Defect Detection API
    • Serverless Hosted API V2
    • Dedicated Deployments
      • How to create a dedicated deployment (Roboflow App)
      • How to create a dedicated deployment (Roboflow CLI)
      • How to use a dedicated deployment
      • How to manage dedicated deployment using HTTP APIs
    • SDKs
      • Python inference-sdk
      • Web Browser
        • inferencejs Reference
        • inferencejs Requirements
      • Lens Studio
        • Changelog - Lens Studio
      • Mobile iOS
      • Luxonis OAK
    • Upload Custom Weights
    • Download Roboflow Model Weights
    • Enterprise Deployment
      • License Server
      • Offline Mode
      • Kubernetes
      • Docker Compose
    • Model Monitoring
      • Alerting
  • Roboflow CLI
    • Introduction
    • Installation and Authentication
    • Getting Help
    • Upload Dataset
    • Download Dataset
    • Run Inference
  • API Reference
    • Introduction
    • Python Package
    • REST API Structure
    • Authentication
    • Workspace and Project IDs
    • Workspaces
    • Workspace Image Query
    • Batches
    • Annotation Jobs
    • Projects
      • Initialize
      • Create
      • Project Folders API
    • Images
      • Upload Images
      • Image Details
      • Upload Dataset
      • Upload an Annotation
      • Search
      • Tags
    • Versions
      • View a Version
      • Create a Project Version
    • Inference
    • Export Data
    • Train a Model
    • Annotation Insights
      • Annotation Insights (Legacy Endpoint)
    • Model Monitoring
      • Custom Metadata
      • Inference Result Stats
  • Support
    • Share a Workspace with Support
    • Account Deletion
    • Frequently Asked Questions
Powered by GitBook
On this page

Was this helpful?

  1. API Reference
  2. Images

Upload Images

Upload image(s) to a dataset on the Roboflow platform.

You can upload images to Roboflow projects using the web interface, Python SDK, REST API, and CLI.

Upload to an Existing Project

from roboflow import Roboflow

# Initialize the Roboflow object with your API key
rf = Roboflow(api_key="YOUR_PRIVATE_API_KEY")

# Retrieve your current workspace and project name
print(rf.workspace())

# Specify the project for upload
# let's you have a project at https://app.roboflow.com/my-workspace/my-project
workspaceId = 'my-workspace'
projectId = 'my-project'
project = rf.workspace(workspaceId).project(projectId)

# Upload the image to your project
project.upload("UPLOAD_IMAGE.jpg")

"""
Optional Parameters:
- num_retry_uploads: Number of retries for uploading the image in case of failure.
- batch_name: Upload the image to a specific batch.
- split: Upload the image to a specific split.
- tag: Store metadata as a tag on the image.
- sequence_number: [Optional] If you want to keep the order of your images in the dataset, pass sequence_number and sequence_size..
- sequence_size: [Optional] The total number of images in the sequence. Defaults to 100,000 if not set.
"""

project.upload(
    image_path="UPLOAD_IMAGE.jpg",
    batch_name="YOUR_BATCH_NAME",
    split="train",
    num_retry_uploads=3,
    tag_names=["YOUR_TAG_NAME"],
    sequence_number=99,
    sequence_size=100
)

Upload to a New Project

To upload a new project, add the following code before your model upload:

from roboflow import Roboflow
rf = Roboflow(api_key="YOUR_PRIVATE_API_KEY")

new_project = rf.workspace().create_project(
    project_name="PROJECT_NAME",
    project_license="MIT",
    project_type="PROJECT_TYPE", 
    annotation="PROJECT_DESCRIPTION"
)

"""
Parameters:
- project_name: Preferred project name.
- project_type: Must be one of object-detection, single-label-classification, multi-label-classification, instance-segmentation, or semantic-segmentation.
- project_description: Preferred project description.
"""

CLI upload is especially useful if you have a large number of images (i.e. 1,000+) that you want to upload to Roboflow.

Upload a Single Image

To upload a single file, use the following command:

roboflow upload image.jpg

This will ask you which of your projects to upload into, but you can also skip that by specifying it explicitly using the -p option to the command.

Upload an Image and Annotation

If you have annotations for your image such as a file called image.xml:

roboflow upload image1.jpg -a image.xml

Upload all Images

To upload all images in a folder, use the following command:

roboflow upload *.jpg

Upload all Images and Annotations

If you have many images with annotations, you can pass a special “[filename]” value to the -a option that will match the annotation file name based on the name of the image. This would upload image1.jpg with annotations from image1.xml, and image2.jpg with annotations from image2.xml, etc

roboflow upload *.jpg -a “[filename].xml”

This only works if you have one annotation file for each image. If you have an entire dataset in a common format, like one downloaded from Roboflow Universe, you can also use the import command.

Upload a Dataset

Parameters

Querystring parameters accepted by the API:

api_key: Obtain from https://app.roboflow.com/account/api image: [Optional] URL of the image to add. Use if your image is hosted elsewhere (Required when you don't POST a base64 encoded image in the request body). name: [Optional] The filename of the image (if not set, we will try to infer it). batch: [Optional] Group images under a batch with this name tag: [Optional] Can be specified multiple times. Add tags to uploaded image. split: [Optional] One of: train, valid, or test (defaults to train). sequence_number: [Optional] If you want to keep the order of your images in the dataset, you can uploaded images increasing sequence numbers. sequence_size: [Optional] The total number of images in the sequence. Defaults to 100,000 if not set. inference_id: [Optional] The inference ID passed returned from a roboflow inference detection. This inference_id allows the image to be correlated with a roboflow detection in Model Monitoring (enterprise feature).

Linux or macOS

Uploading a local file called YOUR_IMAGE.jpg using multipart/form-data (recommended):

curl -F name=YOUR_IMAGE.jpg -F split=train \
-F file=@YOUR_IMAGE.jpg \
"https://api.roboflow.com/dataset/YOUR_DATASET_NAME/upload?\
api_key=YOUR_API_KEY"

Alternatively, uploading a base64 encoded image:

base64 -i YOUR_IMAGE.jpg | curl -d @- \
"https://api.roboflow.com/dataset/your-dataset/upload?\
api_key=YOUR_API_KEY&\
name=YOUR_IMAGE.jpg&\
split=train&\
batch=BATCH_NAME_FOR_UPLOAD"
curl -X POST "https://api.roboflow.com/dataset/your-dataset/upload?\
api_key=YOUR_API_KEY&\
image=https%3A%2F%2Fi.imgur.com%2FPEEvqPN.png&\
name=201-956-1246.png&\
split=train"

Windows

Then you can use the same commands as above.

Node.js

Uploading with multipart/form-data (recommended):

const axios = require("axios");
const fs = require("fs");
const FormData = require('form-data');

const formData = new FormData();
formData.append("name", "YOUR_IMAGE.jpg");
formData.append("file", fs.createReadStream("YOUR_IMAGE.jpg"));
formData.append("split", "train");

axios({
    method: "POST",
    url: "https://api.roboflow.com/dataset/YOUR_DATASET_NAME/upload",
    params: {
        api_key: "YOUR_API_KEY"
    },
    data: formData,
    headers: formData.getHeaders()
})
.then(function(response) {
    console.log(response.data);
})
.catch(function(error) {
    console.log(error.message);
});

Uploading with base64 encoded image (not recommended):

const axios = require("axios");
const fs = require("fs");

const image = fs.readFileSync("YOUR_IMAGE.jpg", {
    encoding: "base64"
});

axios({
    method: "POST",
    url: "https://api.roboflow.com/dataset/YOUR_DATASET_NAME/upload",
    params: {
        api_key: "YOUR_API_KEY",
        name: "YOUR_IMAGE.jpg",
        split: "train",
        batch: "YOUR_BATCH_NAME"
    },
    data: image,
    headers: {
        "Content-Type": "application/x-www-form-urlencoded"
    }
})
.then(function(response) {
    console.log(response.data);
})
.catch(function(error) {
    console.log(error.message);
});

Adding an Image Hosted Elsewhere via URL

const axios = require("axios");

axios({
    method: "POST",
    url: "https://api.roboflow.com/dataset/YOUR_DATASET_NAME/upload",
    params: {
        api_key: "YOUR_API_KEY",
        image: "https://i.imgur.com/PEEvqPN.png",
        name: "201-956-1246.png",
        split: "train"
    }
})
.then(function(response) {
    console.log(response.data);
})
.catch(function(error) {
    console.log(error.message);
});

Web

Swift

An example upload snippet using Swift for developing on iOS.

//Upload an image to a provided project
public func uploadImage(image: UIImage, project: String, completion: @escaping (UploadResult)->()) {
    let encodedImage = convertImageToBase64String(img: image)
    let uuid = UUID().uuidString
    
    var request = URLRequest(url: URL(string: "https://api.roboflow.com/dataset/\(project)/upload?api_key=\(apiKey!)&name=\(uuid)&split=train")!,timeoutInterval: Double.infinity)

    request.addValue("application/x-www-form-urlencoded", forHTTPHeaderField: "Content-Type")
    request.httpMethod = "POST"
    request.httpBody = encodedImage.toData()
    
    URLSession.shared.dataTask(with: request) { data, response, error in
        // Parse Response to String
        guard let data = data else {
            completion(UploadResult.Error)
            return
        }

        do {
            let dict = try JSONSerialization.jsonObject(with: data, options: []) as? [String: Any]
            let duplicate = dict!["duplicate"] as? Bool
            
            if duplicate ==  true {
                completion(UploadResult.Duplicate)
            } else {
                let success = dict!["success"] as! Bool
                if success == true {
                    completion(UploadResult.Success)
                } else {
                    completion(UploadResult.Error)
                }
            }

        } catch {
            print(error.localizedDescription)
            completion(UploadResult.Error)
        }
    }.resume()
}

func convertImageToBase64String (img: UIImage) -> String {
    return img.jpegData(compressionQuality: 1)?.base64EncodedString() ?? ""
}

}

Kotlin

Uploading with base64 encoded image:

import java.io.*
import java.net.HttpURLConnection
import java.net.URL
import java.nio.charset.StandardCharsets
import java.util.*

fun main() {
    // Get Image Path
    val filePath = System.getProperty("user.dir") + System.getProperty("file.separator") + "YOUR_IMAGE.jpg"
    val file = File(filePath)

    // Base 64 Encode
    val encodedFile: String
    val fileInputStreamReader = FileInputStream(file)
    val bytes = ByteArray(file.length().toInt())
    fileInputStreamReader.read(bytes)
    encodedFile = String(Base64.getEncoder().encode(bytes), StandardCharsets.US_ASCII)
    val API_KEY = "" // Your API Key
    val DATASET_NAME = "your-dataset" // Set Dataset Name (Found in Dataset URL)

    // Construct the URL
    val uploadURL = "https://api.roboflow.com/dataset/" +
            DATASET_NAME + "/upload" +
            "?api_key=" + API_KEY +
            "&name=YOUR_IMAGE.jpg" +
            "&split=train"

    // Http Request
    var connection: HttpURLConnection? = null
    try {
        // Configure connection to URL
        val url = URL(uploadURL)
        connection = url.openConnection() as HttpURLConnection
        connection.requestMethod = "POST"
        connection.setRequestProperty("Content-Type",
                "application/x-www-form-urlencoded")
        connection.setRequestProperty("Content-Length",
                Integer.toString(encodedFile.toByteArray().size))
        connection.setRequestProperty("Content-Language", "en-US")
        connection.useCaches = false
        connection.doOutput = true

        //Send request
        val wr = DataOutputStream(
                connection.outputStream)
        wr.writeBytes(encodedFile)
        wr.close()

        // Get Response
        val stream = connection.inputStream
        val reader = BufferedReader(InputStreamReader(stream))
        var line: String?
        while (reader.readLine().also { line = it } != null) {
            println(line)
        }
        reader.close()
    } catch (e: Exception) {
        e.printStackTrace()
    } finally {
        connection?.disconnect()
    }
}
main()

Adding an Image Hosted Elsewhere via URL:

import java.io.BufferedReader
import java.io.DataOutputStream
import java.io.InputStreamReader
import java.net.HttpURLConnection
import java.net.URL
import java.net.URLEncoder
import java.nio.charset.StandardCharsets

fun main() {
    val imageURL = "https://i.imgur.com/PEEvqPN.png" // Replace Image URL
    val API_KEY = "" // Your API Key
    val DATASET_NAME = "your-dataset" // Set Dataset Name (Found in Dataset URL)

    // Upload URL
    val uploadURL = ("https://api.roboflow.com/dataset/" + DATASET_NAME + "/upload" + "?api_key=" + API_KEY
            + "&name=YOUR_IMAGE.jpg" + "&split=train" + "&image="
            + URLEncoder.encode(imageURL, "utf-8"))

    // Http Request
    var connection: HttpURLConnection? = null
    try {
        // Configure connection to URL
        val url = URL(uploadURL)
        connection = url.openConnection() as HttpURLConnection
        connection.requestMethod = "POST"
        connection.setRequestProperty("Content-Type", "application/x-www-form-urlencoded")
        connection.setRequestProperty("Content-Length", Integer.toString(uploadURL.toByteArray().size))
        connection.setRequestProperty("Content-Language", "en-US")
        connection.useCaches = false
        connection.doOutput = true

        // Send request
        val wr = DataOutputStream(connection.outputStream)
        wr.writeBytes(uploadURL)
        wr.close()

        // Get Response
        val stream = connection.inputStream
        val reader = BufferedReader(InputStreamReader(stream))
        var line: String?
        while (reader.readLine().also { line = it } != null) {
            println(line)
        }
        reader.close()
    } catch (e: Exception) {
        e.printStackTrace()
    } finally {
        connection?.disconnect()
    }
}

main()

Android (Java)

Uploading with base64 encoded image:

import java.io.*;
import java.net.HttpURLConnection;
import java.net.URL;
import java.nio.charset.StandardCharsets;
import java.util.Base64;

public class UploadLocal {
    public static void main(String[] args) throws IOException {
        // Get Image Path
        String filePath = System.getProperty("user.dir") + System.getProperty("file.separator") + "YOUR_IMAGE.jpg";
        File file = new File(filePath);

        // Base 64 Encode
        String encodedFile;
        FileInputStream fileInputStreamReader = new FileInputStream(file);
        byte[] bytes = new byte[(int) file.length()];
        fileInputStreamReader.read(bytes);
        encodedFile = new String(Base64.getEncoder().encode(bytes), StandardCharsets.US_ASCII);

        String API_KEY = ""; // Your API Key
        String DATASET_NAME = "your-dataset"; // Set Dataset Name (Found in Dataset URL)

        // Construct the URL
        String uploadURL =
                "https://api.roboflow.com/dataset/"+
                        DATASET_NAME + "/upload" +
                        "?api_key=" + API_KEY +
                        "&name=YOUR_IMAGE.jpg" +
                        "&split=train";

        // Http Request
        HttpURLConnection connection = null;
        try {
            //Configure connection to URL
            URL url = new URL(uploadURL);
            connection = (HttpURLConnection) url.openConnection();
            connection.setRequestMethod("POST");
            connection.setRequestProperty("Content-Type",
                    "application/x-www-form-urlencoded");

            connection.setRequestProperty("Content-Length",
                    Integer.toString(encodedFile.getBytes().length));
            connection.setRequestProperty("Content-Language", "en-US");
            connection.setUseCaches(false);
            connection.setDoOutput(true);

            //Send request
            DataOutputStream wr = new DataOutputStream(
                    connection.getOutputStream());
            wr.writeBytes(encodedFile);
            wr.close();

            // Get Response
            InputStream stream = connection.getInputStream();
            BufferedReader reader = new BufferedReader(new InputStreamReader(stream));
            String line;
            while ((line = reader.readLine()) != null) {
                System.out.println(line);
            }
            reader.close();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }
    }
}

Adding an Image Hosted Elsewhere via URL:

import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.net.URLEncoder;
import java.nio.charset.StandardCharsets;

public class UploadHosted {
    public static void main(String[] args) {
        String imageURL = "https://i.imgur.com/PEEvqPN.png"; // Replace Image URL
        String API_KEY = ""; // Your API Key
        String DATASET_NAME = "your-dataset"; // Set Dataset Name (Found in Dataset URL)

        // Upload URL
        String uploadURL = "https://api.roboflow.com/dataset/" + DATASET_NAME + "/upload" + "?api_key=" + API_KEY
                + "&name=YOUR_IMAGE.jpg" + "&split=train" + "&image="
                + URLEncoder.encode(imageURL, StandardCharsets.UTF_8);

        // Http Request
        HttpURLConnection connection = null;
        try {
            // Configure connection to URL
            URL url = new URL(uploadURL);
            connection = (HttpURLConnection) url.openConnection();
            connection.setRequestMethod("POST");
            connection.setRequestProperty("Content-Type", "application/x-www-form-urlencoded");

            connection.setRequestProperty("Content-Length", Integer.toString(uploadURL.getBytes().length));
            connection.setRequestProperty("Content-Language", "en-US");
            connection.setUseCaches(false);
            connection.setDoOutput(true);

            // Send request
            DataOutputStream wr = new DataOutputStream(connection.getOutputStream());
            wr.writeBytes(uploadURL);
            wr.close();

            // Get Response
            InputStream stream = connection.getInputStream();
            BufferedReader reader = new BufferedReader(new InputStreamReader(stream));
            String line;
            while ((line = reader.readLine()) != null) {
                System.out.println(line);
            }
            reader.close();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
        }
    }
}

Ruby

Gemfile
source "https://rubygems.org"

gem "httparty", "~> 0.18.1"
gem "base64", "~> 0.1.0"
gem "cgi", "~> 0.2.1"

Gemfile.lock
GEM
  remote: https://rubygems.org/
  specs:
    base64 (0.1.0)
    cgi (0.2.1)
    httparty (0.18.1)
      mime-types (~> 3.0)
      multi_xml (>= 0.5.2)
    mime-types (3.3.1)
      mime-types-data (~> 3.2015)
    mime-types-data (3.2021.0225)
    multi_xml (0.6.0)

PLATFORMS
  x64-mingw32
  x86_64-linux

DEPENDENCIES
  base64 (~> 0.1.0)
  cgi (~> 0.2.1)
  httparty (~> 0.18.1)

BUNDLED WITH
   2.2.15

Uploading with base64 encoded image:

require 'base64'
require 'httparty'

encoded = Base64.encode64(File.open("YOUR_IMAGE.jpg", "rb").read)
dataset_name = "your-dataset" # Set Dataset Name (Found in Dataset URL)
api_key = "" # Your API KEY Here

params = "?api_key=" + api_key + 
"&name=YOUR_IMAGE.jpg" + 
"&split=train"

response = HTTParty.post(
    "https://api.roboflow.com/dataset/" + dataset_name + "/upload" + params,
    body: encoded, 
    headers: {
    'Content-Type' => 'application/x-www-form-urlencoded',
    'charset' => 'utf-8'
  })

  puts response

 

Adding an Image Hosted Elsewhere via URL:

require 'httparty'
require 'cgi'

dataset_name = "your-dataset" # Set Dataset Name (Found in Dataset URL)
api_key = "" # Your API KEY Here
img_url = "https://i.imgur.com/PEEvqPN.png" # Construct the URL

img_url = CGI::escape(img_url)

params = "?api_key=" + api_key + 
"&name=YOUR_IMAGE.jpg" + 
"&split=train" +
"&image=" + img_url

response = HTTParty.post(
    "https://api.roboflow.com/dataset/" + dataset_name + "/upload" + params,
    headers: {
    'Content-Type' => 'application/x-www-form-urlencoded',
    'charset' => 'utf-8'
  })

puts response

PHP

Uploading with base64 encoded image:

<?php

// Base 64 Encode Image
$data = base64_encode(file_get_contents("YOUR_IMAGE.jpg"));

$api_key = ""; // Set API Key
$dataset_name = "your-dataset"; // Set Dataset Name (Found in Dataset URL)

// URL for Http Request
$url = "https://api.roboflow.com/dataset/" 
. $dataset_name .  "/upload" 
.  "?api_key="  .  $api_key  
.  "&name=YOUR_IMAGE.jpg" 
. "&split=train";

// Setup + Send Http request
$options = array(
  'http' => array (
    'header' => "Content-type: application/x-www-form-urlencoded\r\n",
    'method'  => 'POST',
    'content' => $data
  ));

$context  = stream_context_create($options);
$result = file_get_contents($url, false, $context);
echo $result;
?>

Adding an Image Hosted Elsewhere via URL:

<?php

$api_key = ""; // Set API Key
$dataset_name = "your-dataset"; // Set Dataset Name (Found in Dataset URL)
$img_url = "https://i.imgur.com/PEEvqPN.png";

// URL for Http Request
$url = "https://api.roboflow.com/dataset/" 
. $dataset_name .  "/upload" 
.  "?api_key="  .  $api_key  
.  "&name=YOUR_IMAGE.jpg" 
. "&split=train" 
. "&image=" . urlencode($img_url);

// Setup + Send Http request
$options = array(
  'http' => array (
    'header' => "Content-type: application/x-www-form-urlencoded\r\n",
    'method'  => 'POST'
  ));

$context  = stream_context_create($options);
$result = file_get_contents($url, false, $context);
echo $result;
?>

Go

Uploading with base64 encoded image:

package main

import (
    "bufio"
    "encoding/base64"
    "fmt"
    "io/ioutil"
    "os"
	"net/http"
	"strings"
)

func main() {
	api_key := ""  // Your API Key
	dataset_name := "Your-Dataset" // Set Dataset Name (Found in Dataset URL)

    // Open file on disk.
    f, _ := os.Open("YOUR_IMAGE.jpg")

    // Read entire JPG into byte slice.
    reader := bufio.NewReader(f)
    content, _ := ioutil.ReadAll(reader)

    // Encode as base64.
    data := base64.StdEncoding.EncodeToString(content)
	uploadURL := "https://api.roboflow.com/dataset/"+ dataset_name + "/upload"+
    "?api_key=" + api_key +
    "&name=YOUR_IMAGE.jpg" +
    "&split=train"

	res, _ := http.Post(uploadURL, "application/x-www-form-urlencoded", strings.NewReader(data))
    body, _ := ioutil.ReadAll(res.Body)
	fmt.Println(string(body))

}

Adding an Image Hosted Elsewhere via URL:

package main

import (
    "fmt"
	"net/http"
	"net/url"
	"io/ioutil"

)

func main() {
	api_key := ""  // Your API Key
	dataset_name := "Your-Dataset" // Set Dataset Name (Found in Dataset URL)
	img_url := "https://i.imgur.com/PEEvqPN.png"


	uploadURL := "https://api.roboflow.com/dataset/"+ dataset_name + "/upload"+
    "?api_key=" + api_key +
    "&name=YOUR_IMAGE.jpg" +
    "&split=train" + "&image=" + url.QueryEscape(img_url)

	res, _ := http.Post(uploadURL, "application/x-www-form-urlencoded", nil)
	body, _ := ioutil.ReadAll(res.Body)
    fmt.Println(string(body))


}

.NET

Uploading with base64 encoded image:

using System;
using System.IO;
using System.Net;
using System.Text;

namespace UploadLocal
{
    class UploadLocal
    {

        static void Main(string[] args)
        {
            byte[] imageArray = System.IO.File.ReadAllBytes(@"YOUR_IMAGE.jpg");
            string encoded = Convert.ToBase64String(imageArray);
            byte[] data = Encoding.ASCII.GetBytes(encoded);
            string API_KEY = ""; // Your API Key
            string DATASET_NAME = "your-dataset"; // Set Dataset Name (Found in Dataset URL)

            // Construct the URL
            string uploadURL =
                    "https://api.roboflow.com/dataset/" +
                            DATASET_NAME + "/upload" +
                            "?api_key=" + API_KEY +
                            "&name=YOUR_IMAGE.jpg" +
                            "&split=train";

            // Service Request Config
            ServicePointManager.Expect100Continue = true;
            ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls12;

            // Configure Request
            WebRequest request = WebRequest.Create(uploadURL);
            request.Method = "POST";
            request.ContentType = "application/x-www-form-urlencoded";
            request.ContentLength = data.Length;

            // Write Data
            using (Stream stream = request.GetRequestStream())
            {
                stream.Write(data, 0, data.Length);
            }

            // Get Response
            string responseContent = null;
            using (WebResponse response = request.GetResponse())
            {
                using (Stream stream = response.GetResponseStream())
                {
                    using (StreamReader sr99 = new StreamReader(stream))
                    {
                        responseContent = sr99.ReadToEnd();
                    }
                }
            }

            Console.WriteLine(responseContent);

        }
    }
}

Adding an Image Hosted Elsewhere via URL:

using System;
using System.IO;
using System.Net;
using System.Web;

namespace UploadHosted
{
    class UploadHosted
    {
        static void Main(string[] args)
        {
            string API_KEY = ""; // Your API Key
            string DATASET_NAME = "your-dataset"; // Set Dataset Name (Found in Dataset URL)
            string imageURL = "https://i.imgur.com/PEEvqPN.png";
            imageURL = HttpUtility.UrlEncode(imageURL);

            // Construct the URL
            string uploadURL =
                    "https://api.roboflow.com/dataset/" +
                            DATASET_NAME + "/upload" +
                            "?api_key=" + API_KEY +
                            "&name=YOUR_IMAGE.jpg" +
                            "&split=train" +
                            "&image=" + imageURL;

            // Service Point Config
            ServicePointManager.Expect100Continue = true;
            ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls12;

            // Configure Http Request
            WebRequest request = WebRequest.Create(uploadURL);
            request.Method = "POST";
            request.ContentType = "application/x-www-form-urlencoded";
            request.ContentLength = 0;

            // Get Response
            string responseContent = null;
            using (WebResponse response = request.GetResponse())
            {
                using (Stream stream = response.GetResponseStream())
                {
                    using (StreamReader sr99 = new StreamReader(stream))
                    {
                        responseContent = sr99.ReadToEnd();
                    }
                }
            }

            Console.WriteLine(responseContent);

        }
    }
}

View Uploaded Images in Roboflow

Images uploaded via the API can be found in the Annotate tab, under the unassigned column and marked as uploaded via API.

If you specify a batch upload parameter, your image will still be found in the Annotate tab but instead of going to the uploaded via API batch it will be found in the batch you specified.

PreviousImagesNextImage Details

Last updated 1 month ago

Was this helpful?

To upload a full dataset, refer to the documentation.

Uploading an image hosted on the web via its URL (don't forget to ):

You will need to install and . The easiest way to do this is to use the which also includes the curl and base64 command line tools when you select "Use Git and optional Unix tools from the Command Prompt" during installation.

We're using and to perform the POST request in this example so first run npm install axios form-data to install the dependency.

We are currently beta testing roboflow.js, a browser-based JavaScript library which, among other things, includes safe client-side uploads without exposing your secret API Key to the web. If you'd like early access, please .

URL encode it
curl for Windows
GNU's base64 tool for Windows
git for Windows installer
axios
form-data
contact us
Upload Dataset