YOLO-World
YOLO-Worldはゼロショット物体検出モデルで、検出したいアイテムを記述するだけで、トレーニングなしで物体検出を行うことができます。
YOLO-Worldをローカルで実行することもできます 推論、私たちのオープンソース推論サーバーです。
APIリファレンス
ホストされたAPIの基本URLは https://infer.roboflow.com
.
Run the YOLO-World zero-shot object detection model.
Roboflow API Key that will be passed to the model during initialization for artifact retrieval
Request for Grounding DINO zero-shot predictions.
Attributes: text (List[str]): A list of strings.
Roboflow API Key that will be passed to the model during initialization for artifact retrieval
true
The type of the model, usually referring to what task the model performs
object-detection
If true, the auto orient preprocessing step is disabled for this call.
false
If true, the auto contrast preprocessing step is disabled for this call.
false
If true, the grayscale preprocessing step is disabled for this call.
false
If true, the static crop preprocessing step is disabled for this call.
false
A list of strings
["person","dog","cat"]
l
0.4
Successful Response
Validation Error
POST /yolo_world/infer HTTP/1.1
Host:
Content-Type: application/json
Accept: */*
Content-Length: 431
{
"id": "text",
"api_key": "text",
"usage_billable": true,
"start": 1,
"source": "text",
"source_info": "text",
"model_id": "text",
"model_type": "object-detection",
"image": [
{
"type": "url",
"value": "http://www.example-image-url.com"
}
],
"disable_preproc_auto_orient": false,
"disable_preproc_contrast": false,
"disable_preproc_grayscale": false,
"disable_preproc_static_crop": false,
"text": [
"person",
"dog",
"cat"
],
"yolo_world_version_id": "l",
"confidence": 0.4
}
{
"visualization": "text",
"inference_id": "text",
"frame_id": 1,
"time": 1,
"image": [
{
"width": 1,
"height": 1
}
],
"predictions": [
{
"x": 1,
"y": 1,
"width": 1,
"height": 1,
"confidence": 1,
"class": "text",
"class_confidence": 1,
"class_id": 1,
"tracker_id": 1,
"detection_id": "text",
"parent_id": "text"
}
]
}
Last updated
Was this helpful?