YOLO-World
YOLO-Worldはゼロショット物体検出モデルで、検出したい項目を記述するだけで、訓練なしに物体検出を行うことができます。
YOLO-World をローカルでも実行できます。使用するのは Inference、当社のオープンソースの推論サーバーです。
APIリファレンス
ホストされた API のベース URL は次のとおりです https://infer.roboflow.com.
Run the YOLO-World zero-shot object detection model.
Roboflow API Key that will be passed to the model during initialization for artifact retrieval
Request for Grounding DINO zero-shot predictions.
Attributes: text (List[str]): A list of strings.
Roboflow API Key that will be passed to the model during initialization for artifact retrieval
trueIf true, disables model monitoring for this request
falseThe type of the model, usually referring to what task the model performs
object-detectionIf true, the auto orient preprocessing step is disabled for this call.
falseIf true, the auto contrast preprocessing step is disabled for this call.
falseIf true, the grayscale preprocessing step is disabled for this call.
falseIf true, the static crop preprocessing step is disabled for this call.
falseA list of strings
["person","dog","cat"]l0.4Successful Response
Validation Error
POST /yolo_world/infer HTTP/1.1
Host:
Content-Type: application/json
Accept: */*
Content-Length: 464
{
"id": "text",
"api_key": "text",
"usage_billable": true,
"start": 1,
"source": "text",
"source_info": "text",
"disable_model_monitoring": false,
"model_id": "text",
"model_type": "object-detection",
"image": [
{
"type": "url",
"value": "http://www.example-image-url.com"
}
],
"disable_preproc_auto_orient": false,
"disable_preproc_contrast": false,
"disable_preproc_grayscale": false,
"disable_preproc_static_crop": false,
"text": [
"person",
"dog",
"cat"
],
"yolo_world_version_id": "l",
"confidence": 0.4
}{
"visualization": "text",
"inference_id": "text",
"frame_id": 1,
"time": 1,
"image": [
{
"width": 1,
"height": 1
}
],
"predictions": [
{
"x": 1,
"y": 1,
"width": 1,
"height": 1,
"confidence": 1,
"class": "text",
"class_confidence": 1,
"class_id": 1,
"tracker_id": 1,
"detection_id": "text",
"parent_id": "text"
}
]
}Last updated
Was this helpful?